The Babel Programming Language

WehrWolff

October 29, 2025



Contents

Contents

I Manual

1 Babel 0.0 Documentation
1.1 Important Links . . . . . . . L e e e e e e e e e e e
1.2 Introduction . . . . L L L e e e e e e e e e e
1.3 Key Features of Babel . . . . . . . . . . . e

2 Getting started

3 Constants



Part |

Manual



Chapter 1

Babel 0.0 Documentation

Welcome to the documentation for Babel 0.0.

This documentation is for an unreleased, in-development, version of Babel.

The documentation is also available in PDF format: TheBabelProgramminglLanguage. pdf.

1.1 Important Links

Below is a non-exhaustive list of links that will be useful as you learn and use the Babel programming language.

e Babel Homepage

* Download Babel

* Discussion forum

* Babel YouTube

* Find Babel Packages

* Learning Resources

1.2 Introduction

In the world of programming, there has always been a tension between control and abstraction. Developers
have long sought languages that balance performance and flexibility, allowing them to efficiently solve prob-
lems while maintaining control over system resources. As software systems grow more complex, the demand
for both low-level control and high-level ease of use has become even more crucial.

Babel is a general-purpose programming language designed to meet this challenge. It combines low-level
control—such as direct memory management and system resource access—with the expressiveness and safety
features of higher-level languages. This empowers developers to write efficient, performant, and maintainable
code. Babel provides the raw performance needed for systems programming and other performance-critical
tasks, while also remaining approachable for developers looking to build web applications, mobile apps, or
general-purpose tools.


https://wehrwolff.github.io/babel/
https://wehrwolff.github.io/babel/downloads
https://github.com/WehrWolff/babel/discussions
https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://wehrwolff.github.io/beemo/
https://wehrwolff.github.io/babel/learning

CHAPTER 1. BABEL 0.0 DOCUMENTATION 3

Babel is designed for both experienced developers who require fine-grained control over system resources
and newcomers who need a smooth entry into the world of programming. It allows users to learn critical
concepts such as pointers and memory management in a safe, accessible environment, making it ideal as a
first language without sacrificing the power and flexibility expected from more advanced languages like C.

1.3 Key Features of Babel

1.

3.

Multi-Paradigm Design

Babel supports a wide range of programming paradigms, providing developers with the flexibility to
choose the most suitable approach for their projects. It combines the best features of various program-
ming styles to create a powerful and adaptable environment:

- Object-Oriented Programming (OOP): With class-based object-oriented features, Babel allows
developers to structure their code in a modular and reusable way, promoting clean, maintainable
designs.

- Procedural (Imperative) Programming: For those who prefer a more straightforward approach,
Babel supports traditional procedural programming, where the logic is organized into functions and
executed in sequence.

- Functional Programming: Babel supports lambda functions and higher-order functions, enabling
functional programming techniques that allow for concise, expressive code and better abstraction.

This multi-paradigm support allows Babel to adapt to different styles and project requirements, giving
developers the freedom to choose the most effective approach to solve their problems.

Various Compilation Models

Babel provides a flexible compilation model that enables both high performance and rapid iteration,
accommodating different use cases and development styles:

- Ahead-of-Time (AOT) Compilation: By default, Babel uses AOT compilation to generate opti-
mized machine code before execution. This ensures that code is highly efficient, with minimal
runtime overhead, making it ideal for performance-critical applications such as systems program-
ming and real-time systems.

- Just-in-Time (JIT) Compilation: In addition to AOT, Babel also supports JIT compilation, which
allows the compiler to generate machine code at runtime. This can lead to more dynamic execution
and is particularly useful for scenarios where runtime performance tuning is essential.

- Bytecode Generation: Babel is designed to be compiled to bytecode in the future, offering the
possibility of platform-independent code execution, similar to Java. This enables cross-platform
compatibility and makes it easier to target different architectures.

Seamless Interoperability

One of Babel’s standout features is its ability to seamlessly integrate with existing codebases and li-
braries, ensuring broad compatibility across languages and platforms:

- C Integration: Babel provides straightforward integration with C, allowing developers to call C
functions directly from Babel code. This ensures that you can leverage existing C libraries and
tools, making it ideal for system-level programming or projects that require specialized C libraries.

- LLVM IR Interoperability: Babel is designed to work with any language that emits LLVM Inter-
mediate Representation (IR), such as Rust, Swift, and more. This compatibility opens the door for
developers to use libraries or code written in other languages that target the LLVM ecosystem.



CHAPTER 1. BABEL 0.0 DOCUMENTATION 4

- Cross-Platform Compatibility: Babel can be compiled for different platforms, from embedded
systems to high-performance servers. lIts ability to work across diverse environments makes it
highly versatile and adaptable for a wide range of use cases.



Chapter 2

Getting started

Traditionally, the first program in any new programming language is one that displays the words “Hello world”
on the screen. In Babel, this can be done using the print function. Here's how you'd write it:

print("Hello world")
# Prints "Hello world" without a newline

This syntax should feel familiar if you've worked with other languages. In Babel, this line of code is a complete
program — no need for complex setups or boilerplate. There's no main() task required to start, but if you
prefer to explicitly define one, you can do so to mark the entry point of your program for larger projects.

task main(argc: Int, argv: vList<String>) => void!
if argc > 1 then
println() <| fmt() <| "Greetings {argv.join(', ')}!"
else
println() <| "Greetings Universe!"
end
end

Whoa, there's a lot going on here now! This is just to show experienced programmers what is possible in Babel.
We’ll cover all these concepts — from tasks, argument handling, the pipe operator, and string formatting — in
upcoming sections. Don't worry if this seems like a lot to take in right now!



Chapter 3

Constants

They are cool.



	Contents
	Manual
	Babel 0.0 Documentation
	Important Links
	Introduction
	Key Features of Babel

	Getting started
	Constants


